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Abstract. We consider the dynamics of a model introduced recently by Bialas, Burda and
Johnston. At equilibrium the model exhibits a transition between a fluid and a condensed phase.
For long evolution times the dynamics of condensation possesses a scaling regime that we study
by analytical and numerical means. We determine the scaling form of the occupation number
probabilities. The behaviour of the two-time correlations of the energy demonstrates that aging
takes place in the condensed phase, while it does not in the fluid phase.

1. Introduction

Recently a number of studies have been devoted to the dynamics of the backgammon model,
a simple stochastic model which exhibits some of the features of glassy systems such as slow
dynamics, non-stationary properties of two-time correlations, violation of the fluctuation-
dissipation ratio, etc. [1–8]. The model introduced in [9] is a simple generalization of one
of the models defined in [3] (model B), itself closely related to the backgammon model.
In contrast with the latter—or with model B—it exhibits, at finite temperature, a phase
transition between a fluid and a condensed phase. The aim of this paper is to study the
dynamics of condensation in this model, hereafter referred to as model B′. This study is
motivated by the fact that, while for model B the non-equilibrium properties such as slow
dynamics [3] or aging [5] only occur at zero temperature, here they appear in a whole phase,
where the system condenses. In this work we focus our interest on the scaling behaviour of
the occupation probabilities and just attempt a short description of the two-time correlations.
The dynamics of this model may also serve as a source of inspiration for the understanding
of the dynamics of Bose–Einstein condensation, for which little is known. Finally the
dynamics of the original branched polymer model introduced by the authors of [9] may
have an interest in its own.

2. Definitions

Consider a system ofN particles distributed amongstM boxes. We denote byNi the
number of particles contained in box numberi (i = 1, . . . ,M), with

∑
i Ni = N . The

energy of a given configurationC = {N1, N2, . . . , NM} of the system is defined as the sum
of the energies of individual boxesE(C) =∑i E(Ni). The Boltzmann factor associated to
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E(k) is denoted bypk. The partition function of the system reads†:

ZM,N =
∑
N1

. . .
∑
NM

pN1 . . . pNM δ
(∑

Ni,N
)
=
∮

dz

2π izN+1
[P(z)]M. (1)

The right-hand expression is obtained by using the integral representation

δ(m, n) =
∮

dz zm−n/2π iz

for the constraint. Equation (1) shows that the equilibrium properties of the system depend
only on the set{pk}, or, equivalently, on its generating functionP(z) =∑k pkz

k.
In the present work we restrict our study to the class of models for whichE(k) behaves

logarithmically‡ for largek. The functionP(z) has, therefore, a finite radius of convergence
zc = 1, with a singularity of the form(zc − z)β−1. For definiteness we study model B′

defined by takingE(k) = ln(1+ k), hencepk = (1+ k)−β , leading to a Dirichlet series for
P(z) [9]. In parallel we will recall below the properties of model B [3] defined by taking
E(k) = −δk,0, hencepk = eβδk,0 andP(z) = eβ + z/(1− z).

3. Equilibrium properties

The equilibrium properties of the models follow simply from the previous definitions.
In the thermodynamic limit(M,N → ∞), the densityρ = N/M being fixed, the
method of steepest descent can be applied to the integral (1). The saddle-point equation
reads dP(z)/dz = ρP (z)/z. The saddle-point valuezs, which is by definition the
thermodynamical fugacity of the model, is thus related to temperature and density. The
free energy per box reads−βf = lnP(zs) − ρ ln zs. When zs increases from 0 tozc,
df (zs)/dzs = − ln(zs) is positive; hencef (zs) is monotonous. One also finds that in this
range,ρ increases monotonically from 0 toρc = zcP

′(zc)/P (zc). While ρc is infinite for
model B, it is finite in the case of model B′ as long asβ > 2 and readsρc = ζ(β−1)/ζ(β)−1
whereζ is the Riemann function. This fundamental difference between the two models is a
consequence of the behaviour ofpk at infinity and is at the origin of the possible existence
of condensation in model B′. Indeed whenρc is finite, f (ρ) reaches its maximum at
f (ρc) = lnP(zc). Therefore, as long asρ < ρc the system is ‘fluid’. Whenρ > ρc a
condensed phase appears [9]. Thus model B has only a fluid phase forT > 0.

These two phases are characterized by different forms of the occupation probabilities,
defined as follows. The probability that a generic box, say box number 1, containsk

particles is defined asfk = Prob{N1 = k}, i.e.fk represents the fraction of boxes containing
k particles. The same definition holds out of equilibrium. The conservation of the number
of boxes and of the number of particles imposes that

∑
k fk = 1 and

∑
k kfk = ρ. From

the definition above, one gets

fk =
∑
N1

. . .
∑
NM

pN1 . . . pNM δ(N1, k)δ
(∑

Ni,N
)
= pk Z(N − k,M − 1)

Z(N,M)
. (2)

In the thermodynamic limit, using again the steepest descent method, one obtains

fk = pk zks

P(zs)
(ρ < ρc) (3)

† Note the difference between the statistics used in equation (1) and that used in the definition of the backgammon
model [1, 7, 8]. In contrast to the latter, here the particles are not identified by a label. In this sense they are
indistinguishable [3].
‡ Adding toE(k) a linear term ink plays no role because of the constraint.
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in the fluid phase. In the condensed phase, one has

fk = pk

P (1)
(ρ > ρc) (4)

which is the same as equation (3) withzs = 1. The normalization condition
∑

k fk is fulfilled
by both equations. However, the conservation of the number of particles,

∑
k kfk = ρ, holds

only in the fluid phase, while it is violated in the condensed phase where this sum is equal
to ρc. TheM(ρ − ρc) missing particles sit in a single box [9].

An analogous situation occurs for model B atT = 0. Equation (3) givesfk =
ρeβδk,0(1− zs)

2zk−1
s , with ρ(1− zs) = 1− f0. When T → 0, ρc → 0, zs → 1, hence

f0→ 1. Again, in order to restore the conservation of particles, all the particles have to be
in a single box.

4. Definition of the dynamics

The rules defining the dynamics of the models follow naturally from their static definitions.
These rules were given for model B in [3]. In this work we used both the Metropolis rule,
more convenient for Monte Carlo simulations and the heat bath rule, leading to simpler
dynamical equations. Let us first describe the former one. At every time stepδt = 1/M
two boxes are chosen at random, a departure boxd, containingk particles, chosen amongst
the non-empty boxes, and an arrival boxa, containing l particles. Note the difference
with the backgammon model, where the departure box is defined by choosing a particle at
random (see first footnote on page L20). The transfer of one of the particles from boxd to
box a is accepted with a probability min(1, (pk−1/pk)(pl+1/pl)).

In the heat bath case, once a particle is drawn, it is put into one of the boxes with a
probability proportional to the equilibrium probability of the resulting configuration. Thus
this move is accepted with a probability

pl+1

pl

( ∞∑
l=0

fl
pl+1

pl

)−1

.

The corresponding dynamical equation for the occupation probabilities is the master equation
of a random walk forN1, the number of particles in the generic box number 1:

∂fk

∂t
= µk+1fk+1+ λk−1fk−1(1− δk0)−

(
µk(1− δk0)+ λk

)
fk (5)

whereµk = 1, (k > 1) is the hopping rate to the left, corresponding toN1 = k → N1 =
k − 1, and

λk = 1− f0∑∞
l=0 fl(pl+1/pl)

pk+1

pk
(k > 0) (6)

is the hopping rate to the right corresponding toN1 = k→ N1 = k+ 1. The factor 1− δk0

accounts for the fact that one cannot select an empty box as a departure box nor canN1

be negative, i.e.λ−1 = µ0 = 0. In other terms a partially absorbing barrier is present at
site k = 0. This random walk is biased, to the right or to the left, according to whether its
velocity λk − µk is positive or negative, respectively. It is easy to check that equation (5)
fulfills both conservations of boxes and particles.

In the stationary state (̇fk = 0) one recovers the equilibrium results given above. The
detailed balance condition yieldsfk+1/fk = λk, the two possible solutions of which are
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precisely those given in equations (3) and (4) above, from which one gets

1− f0∑∞
l=0 fl(pl+1/pl)

=
{
zs if ρ < ρc

1 if ρ > ρc.
(7)

Model B yields

λk = (1− f0) e−βδk0

1− f0+ f0 e−β
. (8)

Whatever the value ofβ the walk is biased to the left. Therefore, intuitively, no condensation
is expected in this model, except at zero temperature. In this case, sinceλk = 1 if k > 0,
andλ0 = 0, the system performs a symmetric random walk with a totally absorbing barrier
at the origin [3]. Hence fort → ∞, f0 → 1, i.e. all boxes become empty. Nevertheless,
in order to fulfill the conservation of particles, one box has to contain all the particles, as
already explained above.T = 0 appears thus as a critical point. Let us point out that,
for model B, the Metropolis algorithm and the heath bath rule lead to the same dynamical
equation forfk.

The case of model B′ is richer. A simple analysis, and a numerical check, show that
if β is large enough, for smallk the bias is to the left, while it is to the right for largek.
Thus one intuitively expects condensation in this model, for a whole range of values ofβ.

5. Condensation in the scaling regime

A numerical integration of equation (5), and Monte Carlo simulations forβ = 4 and
ρ = 2 > ρc(4) = 0.110, give some insight into the phenomenology of the dynamics in
the condensed phase. Three regimes are observed. First a transient one, with a rapid
reorganization of the particles in the boxes, leading to a situation with a fluid part for small
k and the appearance of a condensate, i.e. a group of boxes containing a large fraction of the
total number of particles. This regime is followed by the scaling regime, our main interest
in this work, where the evolution in time of the condensate is self-similar. The number of
boxes containing the condensate decreases (although it remains large in this regime).

Finally, at very long times, the condensate reduces to a single box according to a non-
universal process where finite size effects should now be taken into account. This sequence
of three regimes takes place in a similar fashion in the case of model B. It is also reminiscent
of the dynamics of coarsening systems [10].

In order to describe the scaling regime forfk we set

fk =


pk

P (1)
(1+ εvk + · · ·) if k < u0/ε

ε2g(u)(1+O(ε)) if k > u0/ε

(9)

where the small scaleε(t) is to be determined, andu = εk is the scaling variable.u0

fixes the separation between condensed and fluid phases, and corresponds intuitively to the
position of the ‘dip’ clearly visible in figure 1.

The normalization conditions
∑
fk = 1 and

∑
kfk = ρ lead, respectively, to

u0/ε∑
0

pk

P (1)
vk +

∫ ∞
u0

g(u) du = 0 (10)

and

ρ − ρc =
∫ ∞
u0

ug(u) du. (11)
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Figure 1. Scaling in the dynamics of condensation for model B′. kfk
√
t , obtained by numerical

integration of equation (5), is plotted againstk/
√
t for 10 different times varying from 100 to

1000 (ρ = 2, β = 4).

It is easy to check that, once the limitt →∞ is taken, withu0 fixed (henceu0/ε→∞),
the limit u0→ 0 can then be taken in (10) and (11).

In order to obtain a continuum description of the master equation we use the expansion,
valid whenk is large,pk+1/pk = 1− β/k + constant/k2+ · · ·. We also set

1− f0∑∞
m=0 fm(pm+1/pm)

= 1+ Aε + · · · (12)

since this quantity goes to unity for long times. The amplitudeA will be determined later.
For smallε (i.e. larget) and fixedu (hence largek) one obtains

ε̇

ε3
(2g + ug′) = g′′ + β

u
g′ − Ag′ − βg

u2
+O(ε) (13)

which is in separable form. The solution forε is constant(t − t0)−1/2 or, after a change in
the origin of time,ε = 1/

√
t . In this regime one therefore obtains

g′′ +
(

1

2
u− A+ β

u

)
g′ +

(
1− β

u2

)
g = 0. (14)

This equation is singular atu = 0 andu = ∞. At u = 0 one expects a power singularity
for g of the formus . The Frobenius seriesg(u) = ∑∞0 anu

s+n carried into (14) gives the
recursion relation

an+2(s + n+ 1)(s + n+ β + 2)− A(s + n+ 1)an+1+ s + n+ 2

2
an = 0 (n > −2)

(15)

with a−1 = a−2 = 0. The radius of convergence of the series thus obtained is infinite. For
n = −2 one has(s − 1)(s + β) = 0. Hence, whenu→ 0, a basis of solutions reads

g
(0)
1 (u) ∼ u g

(0)
2 (u) ∼ u−β. (16)

Only the first solution may be retained because of the normalization ofg (cf equations (10)
and (11)). Whenu → ∞, an asymptotic study of the dominating terms in equation (14)
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Figure 2. Solution of the differential equation (14) withA = 1.9, and Monte Carlo simulation
(t = 1000,N = 1000,M = 500). (ρ = 2, β = 4.)

leads to another basis of solutions (reminiscent of the particular caseA = β = 0, for which
solutions areu e−u

2/4 andu e−u
2/4
∫
u−2 eu

2/4 du), namely

g
(∞)
1 (u) ∼ u1−β e−u

2/4+Au g
(∞)
2 (u) ∼ u−2. (17)

Again the second behaviour should be excluded, because of the normalization conditions
(10) and (11). As the two solutions must be connected,

g
(0)
1 (u) = C1(A, β)g

(∞)
1 (u)+ C2(A, β)g

(∞)
2 (u) (18)

and one must imposeC2(A, β) = 0. This condition determinesA as a function ofβ.
In practice, this may be done numerically either by reconstructingg from its series or
directly from a numerical integration of the differential equation (14). The solution of
equation (14) may be seen as a continuous deformation ofu e−u

2/4, asA and β increase
from zero. Note that the solutiong(u) = u e−u

2/4 of the equationg′′ + ug′/2+ g = 0,
corresponding toA = β = 0, appears also in the scaling regime of model B atT = 0, where
fk = t−1g(kt−1/2) [3]. Figure 2 displays on the same plot the solution of equation (14) with
A determined following this technique, and the Monte Carlo simulation. The agreement
between these two curves is excellent. The numerical solution of (5) for large times is
hardly distinguishable from the solution of (14).

For theoretical purposes, it may be convenient to cast equation (14) into its Schwarzian
form

w′′ + 1

2

(
− u

2

8
+ 1

2
Au+

(
3

2
− β

2
− A

2

2

)
+ Aβ

u
− β(β + 2)

2u2

)
w = 0 (19)

obtained by settingg = vw and choosingv such that no first derivative ofw appears in the
equation. This leads to

g(u) = u−β/2 exp

(
− u

2

8
+ Au

2

)
w(u). (20)

Equation (19) may be recognized as a Schrödinger equation with zero energy. Sincew
is positive, it corresponds to the ground-state solution of the equation. Imposing that the
energy of the ground state be zero determinesA as a function ofβ.



Letter to the Editor L25

Finally, one may find the explicit form offk for small k, i.e. in the fluid part of the
distribution. Substituting the form (9) forfk into the master equation (5) leads to

v1 = v0+ A
pk+1vk+1+ pkvk−1− (pk+1+ pk)vk = A(pk+1− pk) (k > 0)

(21)

the solution of which isvk = v0 + kA. The determination ofv0 is made possible by
equation (10) which gives

v0+ Aρc+
∫ ∞

0
g(u) du = 0 (22)

whereA is already known from above, showing thatv0 is negative.

6. Two-time correlations of the energy

At T = 0, the energy correlation function of model B exhibits aging [5]. It is, therefore,
natural to expect the same property for model B′ in the whole low-temperature phase,ρ
being fixed. Following the notation of [7], the correlation function of the energy of a generic
box, say box number 1, at two timess and t (s < t) readsc(t, s) = f0(s)(g0(t, s)− f0(t)),
wheregk(t, s) is the probability that box number 1 containsk particles at timet , knowing
that it was empty ats. The evolution in time of this quantity is given by (5), with initial
conditions gk(s, s) = δk,0. A numerical integration of these equations shows that the
normalized correlation functionc(t, s)/c(s, s) has the same asymptotic scaling form

√
s/t

as model B [5], forβ > βc, i.e. it exhibits aging in the low-temperature phase. We will
come back to the theoretical analysis of this result in a forthcoming publication.

7. Discussion

We wish to emphasize the remarkable result obtained in this work, namely that the
condensate acquires a universal scaling form directly related to the assumption of a regular
power-law behaviour of thepk at infinity. We checked that the master equation with
Metropolis rule led to the same scaling form forg(u). As a consequence of this scaling
form, the condensation time behaves as the squared size of the system.

We wish to thank R Balian, R Conte, J-M Luck and G Mahoux for interesting conversations.
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